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Abstract

This paper has extended a lattice Monte Carlo (MC) method to simulate the simple shear flow of multiple self-avoiding chains in three
dimensions following our research work in two dimensions. Comparisons of simulation outputs with experimental observations, theoretical
predictions and other simulation results are made. The steady-state scaling analysis to scattering functions of deformed chains confirms the
existence of anisotropic scaling laws at fixed reduced shear rates found in molecular dynamics (MD) simulation. The exponent of chain
deformation shown in the MC simulation falls into a normal regime measured from neutron scattering and light scattering experiments. The
relation between orientation angles and shear rates is consistent with some scattering experiments. Both Newtonian and non-Newtonian
regimes are reproduced in our lattice MC simulation. Non-zero first and second normal stress differences and their dependence of the shear
rate are found, as well as the shear thinning effect. The stress growth at inception and stress decay after cessation of shear flow is also
examined. The validity of our novel simulation approach is thus confirmed. Since both chain conformations and rheological properties under
shear flow can be studied, our MC approach can be used to reveal non-linear viscoelasticity of polymer fluids and polymer-flow interaction.
q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Chain deformation in flow field is a classic problem [1–3]
and now becomes one of the hot topics [4–6] in polymer
science. Computer simulation or computer experiment
constitutes the third research approach besides theory and
experiment [7], with the advantages that the non-linear
dynamics can be dealt with. Molecular dynamics (MD)
simulation [8,9], Brownian dynamics simulation [10–12]
and off-lattice MC simulation [13–17] have been success-
fully used to simulate chain deformation in shear flow.
Especially, a wonderful scaling analysis of chain conforma-
tion under shear has been performed by Pierleoni and
Rychaert [8,9] using MD simulation, and was found in
good agreement with the small angle neutron scattering
(SANS) experiment by Lindner and Oberthur [18,19].
However, the rheological behaviors have not been studied
[8,9] and thus the relationship between chain deformation

and non-linear viscoelasticity of polymers cannot be
elucidated.

Lai and Binder [20] and Lai and Lai [21] also have treated
the endgrafted polymers in shear flow with the lattice Monte
Carlo (MC) simulation extensively by changing the jump
rate in the flow direction thus associated with the velocity
profile. However, in our lattice MC method of simple shear
flow, a pseudo-potential describing the flow field has been
introduced, which has been extended to simulate the flexible
chains in two dimensions [22] and successfully applied to
study anisotropic and enhanced two-dimensional self-
diffusion of a chain under shear flow [23]. In this paper
the lattice MC method will be used to simulate the simple
shear flow of self-avoiding lattice chains in three dimen-
sions, by which the validity of this novel formalism is
further confirmed by comparison with present theories,
experiments and other simulations. Our improvement of
the lattice MC simulation algorithm is much helpful for
studies of non-linear rheological behaviors of multi-chain
systems. The advantage of our novel method is that macro-
scopic stresses can be obtained by statistics of sampled
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configuration distribution function (CDF). The rheological
behaviors of a semi-dilute polymer solution are studied
together with scaling analysis in this paper by MC simula-
tion. The non-linear viscoelasticity is closely related to
chain deformation.

2. Model and velocity profile of simulated flow field

It is relatively difficult to introduce the flow potential in
lattice MC simulation, so this method has not been used into
flow process until our last paper was published, although the
Kramers potential flow [24] has been successfully simulated
earlier [25]. The key in our MC simulation under simple
shear flow is that we introduce a pseudo-potential of shear
flow which makes sense only for thepotential difference
associated with MC sampling for every local movement
of a bead in the lattice chainstrictly defined by the bond
fluctuation algorithm, which has been applied to deal with
many problems of chain conformation and chain dynamics
in zero field [26–30]. This algorithm was proposed by
Carmesin and Kremer [26] originally in two dimensions,
and then developed into three dimensions by Deutsch and
Binder [28] and Wittmann et al. [29]. The simulation
approach of simple shear flow of lattice chains is similar
to that in two dimensions [22,23]. Our pseudo-potential
should be associated with the elementary move of a bead
between two points (x,y,z) and (x 1 Dx; y 1 Dy; z1 Dz).
Here, thex, y andz directions are defined as the flow, velo-
city gradient and vortex directions, respectively. In the
bond-fluctuation algorithm based on cubic lattices,Dx, Dy,
Dz can take value21, 0 or 1 and only one of them can be
non-zero for each elementary move. The potential

difference for an elementary move is written as

DUs �
0 �Dy or Dz� ^1�
7kTGy �Dx� ^1�

(
�1�

Since a bond of a self-avoiding chain corresponds
physically to a “Kuhn segment”, a harmonic elastic energy
associated with the bond fluctuation is introduced by us in
the form of

Uel � 1
2 kTKl2 �2�

In three dimensions, bond lengths are taken as 2,
��
5
p

,
��
6
p

, 3,
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���
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p

to avoid intersection of chain segments whereas
bond angles can be altered within 87 values [28]. So, the
spring is somewhat similar to the Tanner spring [31] or a
“linear locked” spring with the restriction oflmin # l # lmax:

All data in this paper result from Glauber dynamics
sampling [32] with the acceptance probability of each
tried elementary move as

P� exp�2DE=�kT��
1 1 exp�2DE=�kT�� �3�

The transition probabilities involve an energy changeDE
between the new (trial) and the old states. A linear velocity
gradient can be achieved in our lattice MC simulation based
on the pseudo-potential unless the shear rate is unreasonably
high such asGy . 1. Since the Glauber dynamics simula-
tion results in broader linear range of shear rate [22,23], we
prefer this sampling method to the conventional Metropolis
importance sampling [33].

The MC simulation is performed on 64× 64× 64 cubic
lattices. The periodic boundary condition is employed along
thex andz directions whereas two hard walls are set along
the y direction. A semi-dilute polymer solution with the
occupied volume fractionw � 0:122 is examined in detail
with the number of segments per chainN � 40 and the
number of polymeric chainsnp � 100 unless otherwise
indicated.

The steady velocity at any fixedy position has been
achieved by our novel MC method, which can be seen
from the linear relation in the inserted plot of Fig. 1. The
slope of the corresponding fitted straight line gives the
corresponding velocityvx�y�. So a linear velocity gradient
along they direction is achieved, which clearly demon-
strates that the simulated velocity profiles satisfy the
requirements of simple shear flow. The simulated shear
rate _g in the unit of t21

MC (tMC is the MC step) is obtained
from the slope of the corresponding fitted straight line and is
different from the inputted reduced shear rateG in the unit
of l22

MC (lMC is the unit lattice size).

3. Steady-state scaling analysis for chains under shear

Using the above MC method, the configuration of multi-
ple self-avoided chains under simple shear flow can be
easily studied in three dimensions. The chain shape is
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Fig. 1. Simulated flow velocities at different positions along the dimension
of the velocity gradient. The inserted plot indicates the mean displacement
along the flow directionkx�t�l 2 x�0� as a function of the MC timet. (For
every point, the statistics is performed in the steady state at a given shear
rate after evolution for 500,000 MC cycles from the initial state to get the
equilibrium state; the ensemble average over 20 independent runs is
performed and for each run, the time average over 20,000 MC cycles is
made. The system size is 64× 64× 64, np � 100,N � 40,w � 0:122.)



graphically illustrated in Fig. 2, according to which, the
chains are elongated along the flow direction while
contracted along the velocity gradient direction with the
normal dimension almost kept unchanged.

The chain structure over the whole range of relevant
length scales can be reflected by the static structure factor
defined as [8,9,27]

S�k� � 1
N

XN
i;j�1

kexp�2k·�r i 2 r j��l �4�

wherer i is the segment coordination,k the scattering vector,
and k…l indicates ensemble average. The intermediate-k
regime affords information on the spatial correlation of
segments.

It has been noted by Pierleoni and Ryckaert [8,9] that a
universal anisotropic scaling law exists for deformed chains
with different chain lengths, if the reduced shear rateb is
fixed. b is physically related to the apparent shear rate as
b � _gtN; where tN is the longest relaxation time of the
polymer with N segments, here it is determined by the
mode-correlation method for Rouse chains at equilibrium,
just following Carmesin and Kremer [27]. The structure
factors of chains in different chain lengths are compared
under the same reduced shear rate (Fig. 3). The anisotropic

scaling law put forward by the MD simulation of a single
chain [8,9] is thus confirmed by our lattice MC simulation in
multi-chain systems. The static scaling exponenty can be
obtained from the slope of the fitted line (21/y). At equi-
librium, y � 0:55 for this semi-dilute solution, which is
reasonably between 0.5 for a very concentrated solution
and 0.58 for a very dilute solution [34]. Subjected to simple
shear flow,y x gets increased,y y becomes decreased whiley z

is almost kept unchanged, which is in accord with the flow-
induced anisotropic change of chain shapes (Fig. 2). The
above change agrees with the measurement from scattering
experiment [18,19] and also with the statistics from MD
simulation [8,9].

4. Chain stretching and orientation under simple shear
flow

The chain size and shape can be described by the radius of
gyration tensor

Ŝ
2 � 1

2N2

XN
i;j�1

k�r i 2 r j��r i 2 r j�l �5�

The mean square radius of gyration and the orientation
angle with respect to the form birefringence can be obtained
from [3]

S2
G � Tr Ŝ2 � S2

x 1 S2
y 1 S2

z; tg 2Q � 2Sxy

S2
x 2 S2

y
�6�

Here,S2
x, S2

y andS2
z also mean thex, y andz components of

the scaled radius of gyration. On the other hand, the intrinsic
birefringence can be described by the segment orientation
tensor

P̂� h XN 2 1

i�1

�r i11 2 r i��r i11 2 r i�
XN 2 1

i�1

ur i11 2 r i u
2

2
1
3

ı̂i �7�

whereı̂ is the unit tensor. The orientation angle with respect
to the segment orientation or the intrinsic birefringence can
be obtained from Ref. [3]

tg 2useg�
2Pxy

Pxx 2 Pyy
�8�

The chain stretching is seen from the curve of chain size
versus shear rate (Fig. 4). The chain size along the flow
direction is increased, which leads to the increase of the
global radius of gyration, while that along the velocity
gradient is decreased. In theory, chains are not influenced
along the vortex or normal direction. However, the size
along thez direction is still found to decrease slightly if
the chain stretching is very striking under high shear rates.

The scaling law of chain deformation has earlier been
predicted by the dynamic chain models expressed as
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Fig. 2. Steady-state chain shape under simple shear flow atG � 0:002
illustrated by projection of 100 plane multi-chain configurations on the
three indicated cross-sections. Before projection, the centers of mass of
the 100 chains have been moved to the same point.

Fig. 3. Structure factors of chains with different chain lengths under shear at
the fixed reduced shear rateb . For the chains withN � 20, 30 and 40,np

andG are increased to keepw andb unchanged, respectively. (The other
parameters are the same as those in Fig. 1.)



[35–37]

S2
G=S

2
0 2 1 , ba �9�

where S2
0 is the mean square radius of gyration at equi-

librium state. a is said to be 2 according to Rouse
model (bead-spring model) [35], Zimm model (bead-spring
model including hydrodynamic interaction) [36] and Kuhn
model (elastic dumbbell model) [37]. The simulated chain
deformation is, however, smaller than that predicted in
theory (Fig. 5). Lindner and Oberthur studied the conforma-
tion of polystyrene (PS) in a dilute solution under a constant
shear gradient with SANS. Although a satisfactory agree-
ment is found at lowb (b , 1), the trend of the increase of
the chain deformation is strikingly weak at high shear rates
([15, Fig. 10; 16, Fig. 3]). Link and Springer reporteda �
1:4 in their laser light scattering (LS) experiment of PS ([35,
Fig. 11 and Eq. (13)]). A similar phenomenon was observed
by Cottrell et al. [39] and even lower deformation was
described with, according to the calculation of Link and
Springer, a � 1:03. Our simulation is, therefore, semi-

quantitatively coincident with the experimental observa-
tions. The deviation from theory at high shear rate may be
easily accounted for from the fact that chain conformations
under shear are still assumed to be Gaussian in theory,
which is neither true in simulation nor in experiment
especially in the non-linear regime.

In the rheo-optical experiment, the flow birefringence is
usually the combination of the intrinsic birefringence and
the form birefringence. It is easy to distinguish them in
computer simulation. The orientation angles with respect
to both the intrinsic birefringence and form birefringence
are plotted in Fig. 6. The two sorts of orientation angles are
different from each other. Therefore, the deformation of the
global flexible coils under simple shear flow does not take
place with the segment orientation strictly simultaneously.
As far as the form birefringence is concerned, the orienta-
tion angle can be determined from scattering experiment. In
theory, the ideal Rouse model [35] predicts, along with
Zimm model [36] and Kuhn model [37], that

Q � 1
2 arctan�b=b� �10�

whereb is a positive constant. This formula implies that
Q! p=4 when b! 0, and Q! 0 when b! ∞. The
main difference between the present theories and our simu-
lation is that the asymptotic orientation angle of flexible
polymers might not be zero with shear rate increased
infinitely (Fig. 6), just similar to rigid molecules [40]. A
similar phenomenon has been observed in scattering experi-
ment of polystyrene in shear flow by Link and Springer [38].
A revised formula has been put forward by them as

Q � 1
2 arctan

b
b

1 c
� �

�b; c . 0� �11�

Our simulation outputs agree with Eq. (11) more than with
Eq. (10). The main reason may lie in the fact that our simu-
lated bead-spring model is self-avoided and can be used to
describe the non-linear regime at high shear rates.

G. Xu et al. / Polymer 41 (2000) 3289–32953292

Fig. 4. Mean square radius of gyration,S2
G along with itsx, y andz compo-

nents as a function of shear rate_g .

Fig. 5. The deformation ratio of chains under shear flow�S2
G=S

2
0 2 1�as a

function of reduced shear rateb . (Slope� 2:0 predicted by Rouse, Zimm
or Kuhn dynamics theory, while slope� 1:4 and 1.03 resulting from LS
experiments in Refs. [31] and [30], respectively.)

Fig. 6. Averaged orientation anglesQ andu segas a function of shear rate_g .
The dashed and solid lines are the theoretical results from Eqs. (10) and (11)
with Q � 0:5 arctan�0:0001= _g� andQ � 0:5 arctan��0:0001= _g�1 0:35�.



5. Shear rate dependence of rheological behaviors

The main privilege of our novel simulation approach is
that we cannot only describe the microscopic chain con-
formation, but also determine the macroscopic stress
independently by statistics of sampled CDFs. The non-
linear rheological behaviors in multi-chain systems can be
reproduced, and the relation between macroscopic stress
and microscopic chain deformation can be elucidated.

The details of derivation of the statistical formula of
stress was given in our previous paper [22]. After neglecting
hydrodynamic interaction, the stress tensor is, following the
Kramers form for the stress tensor of the bead-spring model
[3], expressed as

ŝ � t̂ 2 t̂0

kT

� np

V

"
�N 2 1�ı̂ 2 K

* XN 2 1

i�1

�r i11 2 r i��r i11 2 r i�
+# �12�

in the unit ofV21
MC, whereVMC is the volume in MC simula-

tion. Here,t̂ and t̂0 are the total stress tensor of polymer
solution and that of pure solvent. The excluded volume
effect on the macroscopic stresses [41,42] is inherently
involved in the present statistic approach since the CDF
has been influenced by this effect in our simulation.

The reduced first and second normal stress differences are
expressed as

N1 � sxx 2 syy; N2 � syy 2 szz �13�
while the reduced apparent viscosity can be obtained from
the reduced shear stress

h � sxy

_g
�14�

The corresponding simulation outputs are shown in Fig. 7.
Besides the shear stress, the normal stress differences are
also reproduced and exhibit shear rate dependence for our
free-draining bead-spring model with excluded volume
effect. It is consistent with the experimental observations
very well [1,43,44].N1 is positive and even larger than
shear stress at high shear rates whileN2 is negative and
very small. It seems worthwhile mentioning that the original
Rouse model and most of other conventional models about
chain dynamics and linear viscoelasticity fail to predict the
non-linear change of normal stress differences with shear
rate, and some classic theories even fail to predict non-zero
second normal stress difference [1–3]. The comparison
between the microscopic chain conformation (Fig. 4) and
the complicated macroscopic rheological behaviors (Fig. 7)
demonstrates that the non-zero normal stress difference in
the non-Newtonian regime and thus the so-called elastic
effect in polymer processing [43,44] originate essentially
from anisotropic chain deformation.

The viscosity exhibits strong shear rate dependence, and
the shear thinning effect at high shear rates widely observed

in experiment [1,43,44] is reproduced in our computer simu-
lation. Therefore, we can obtain the material functions of
flexible macromolecular chains subject to simple shear flow
in both the Newtonian and non-Newtonian regimes. Many
rheological experiments show that some scaling laws about
shear rate dependence of viscometric functions exist in
polymers under shear [1,43,44]. A power law can be
expressed as

h / _gn21 �15�
Obviously,n� 1 leads to the Newtonian fluid. Ifn , 1, the
fluid is said to be “pseudoplastic” whilen . 1 refers to
“dilatant fluids”. Most of polymeric fluids are pseudo-plas-
tic with 0:2 , n , 0:7 in common [1]. The power law is
observed in our MC simulation at high shear rates within
some ranges with a reasonable scaling exponentn� 0:5.
So, our lattice MC simulation agrees with many experimen-
tal measurements even semi-quantitatively.

6. Dynamics of stress growth and stress decay

Non-linear rheological behaviors are also reflected in the
dynamics from one state to another state such as in start-up
dynamics. Corresponding studies are meaningful for
polymer processing [43,44]. The stress growth at inception
of shear flow is shown in Fig. 8 along with the stress decay
after cessation of shear flow. An overshoot of stresses in the
start-up dynamics occurs, which is well known in experi-
ments [1,43,44]. Different from the start-up dynamics of
liquid crystalline polymers, where the overshoots are
pronounced at low shear rates but are suppressed at high
shear rates [40], that of flexible polymers exhibits over-
shoots at high shear rates over a critical value [1,43–45].
This complicated experimental rheological behavior has
been reproduced in our MC simulation. Our simulation indi-
cates that the position of overshoot peak shifts to higher
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Fig. 7. Reduced shear stresss xy (X), first normal stress differenceN1 (A)
and second normal stress differenceN2 (W) as a function of shear rate_g . The
inserted plot indicates the reduced apparent viscosityh as a function of
shear rate_g and the fitted dashed line indicates the result ofh / _g20:5.



shear straing while smaller in terms of shear timet with
increase of shear rates. This result agrees with experimental
observations of flexible polymers very well [1,43–45]
although the critical shear rate over which the overshoot
appears is strongly dependent upon the relaxation time,
which is, in turn, dependent upon the chain density very
much. Even the concrete values of the peak positions,
namely, several shear strains are in the similar order of
experimental measurements of most flexible polymers [1],
which also demonstrates that our novel simulation approach
of the shear flow of self-avoiding lattice chains can be
applied to study the non-Newtonian rheological behaviors
of polymers semi-quantitatively. The stress decay is mean-
while observed and the relaxation rates associated with high
shear rates are faster than those with low shear rates, which
agrees with experiments [1,43–45]. One has seen that the
chain coils are highly stretched, i.e. stored more entropy
elastic energy, when the shear rate is high, which results
in faster stress relaxation.

7. Conclusions

This paper has, for the first time, extended the lattice MC
method to simulate the simple shear flow of self-avoiding
chains in three dimensions. The key point of our improve-
ment is that we have successfully designed a pseudo-
potential describing the shear flow field which makes
sense only for the potential difference associated with the
elementary MC move strictly defined by the bond-
fluctuation approach. Based on this novel MC method, the
linear velocity gradient has been achieved and the require-
ments of simple shear flow are satisfied. All statistical
quantities are obtained from the sampled CDFs under
shear which are, although the corresponding analytical
expression is unknown at the present time, influenced by
the chainlike characteristics of polymers, excluded volume

effect, etc. The hydrodynamics effect [46] is, however, not
involved.

The great advantage of our approach is that both chain
conformation and rheological properties in the non-
Newtonian regime can be studied. The steady-state scaling
analysis to scattering functions of deformed chains under
shear flow confirms the existence of anisotropic scaling laws
at fixed reduced shear rates. Self-avoiding chains are
stretched and oriented under simple shear flow. However,
the deformation ratios deviate from theoretical predictions
at high shear rates although agreement is found at low shear
rates. The deformation exponent at high shear rates falls into
a normal regime measured from SANS and LS experiments.
The orientation angles associated with the form bire-
fringence are closely related with shear rates. The relation
is, however, slightly different from that predicted by Rouse
theory, but consistent with some experimental observations.
The stress tensor is obtained by statistics of sampled CDFs.
Non-zero first and second normal stress differences and their
shear-rate dependence are reproduced, which is conven-
tional for commercial polymers. Both Newtonian and non-
Newtonian regimes are found in our MC simulation. Shear
thinning effect is reproduced in the non-Newtonian regime
with a reasonable power exponent widely observed in most
of the polymers. An overshoot at start-up dynamics of shear
flow is observed in our computer experiment. Similar agree-
ment is found in the examination of the exponential stress
decay after cessation of shear flow. The regularity shown in
our MC simulation is in accord with that observed in experi-
ments rather well. What is more, all the stress evolutions are
accompanied with conformation change and chain
dynamics. The relation between non-linear rheological
behaviors and chain conformation under shear flow is thus
revealed by our novel MC simulation. We reasonably
promise that this approach can be further improved and
applied to many studies associated with polymer-flow
interaction.
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